Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Proc Natl Acad Sci U S A ; 120(24): e2304506120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279276

RESUMO

Dynamic molecular devices operating with time- and history-dependent performance raised new challenges for the fundamental study of microscopic non-steady-state charge transport as well as functionalities that are not achievable by steady-state devices. In this study, we reported a generic dynamic mode of molecular devices by addressing the transient redox state of ubiquitous quinone molecules in the junction by proton/water transfer. The diffusion limited slow proton/water transfer-modulated fast electron transport, leading to a non-steady-state transport process, as manifested by the negative differential resistance, dynamic hysteresis, and memory-like behavior. A quantitative paradigm for the study of the non-steady-state charge transport kinetics was further developed by combining the theoretical model and transient state characterization, and the principle of the dynamic device can be revealed by the numerical simulator. On applying pulse stimulation, the dynamic device emulated the neuron synaptic response with frequency-dependent depression and facilitation, implying a great potential for future nonlinear and brain-inspired devices.

3.
Langmuir ; 38(35): 10893-10901, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36007164

RESUMO

The organization of the self-assembled monolayer (SAM) determines its electronic structure and so governs the charge transport process and device performance when adopted into a molecular device. We report a systematic study on the supramolecular structure and rectification performance of the ferrocene (11-ferrocenyl-1-undecanethiol, FUT) based SAM modulated by mixed SAM with inert 1-undecanethiol (C11SH) as diluent. We compared mixed SAMs by two different post assembly strategies, i.e., post assembly of C11SH on FUT SAM and post assembly of FUT on C11SH SAM. The organization and structure of FUT in the mixed SAM were extensively studied by cyclic voltammetry (CV) using the Laviron model. Rectification properties of the mixed SAM obtained using eutectic indium gallium (EGaIn) as the top electrode revealed that the magnitude and stability of the rectification ratio (RR) strongly correlated to not only the amount but also the phase structure and orientation of the FUT in the monolayer, resulting in a tunable RR and increased stability. The mixed monolayer achieved an increased performance relative to pure FUT by post assembling FUT on C11SH SAM, which formed an optimally dense and well-packed monolayer with the FUT head resting on the top of the alkane SAM.

4.
Phys Chem Chem Phys ; 24(19): 11958-11966, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35531608

RESUMO

A single level tunneling model has been the most popular model system in both experimental and theoretical studies of molecular junctions. We performed a detailed simulation study on the performance of the single level tunneling model for analyzing the charge transport in molecular junctions. Three different modeling methods, including the numerical integration of the Landauer formula and two approximated analytical formulas that are extensively used for extracting key transport parameters, i.e. the energy offset and the coupling strength between molecules and electrodes from current-voltage (I-V) characteristics were compared and evaluated for their applicability. The simulation of I-V plots shows that the applicability of the two approximated analytical models is dependent on the energy offset and coupling strength. Model analysis based on the three methods performed on experimental data obtained from representative literature papers revealed that the two approximated analytical methods are neither suitable for small coupling strength nor suitable for low energy offset, and they also deviated from the exact results at high bias. These results imply that the transport parameters by the model analysis can be wrong if the models were not correctly applied under their intrinsic constraints, therefore providing wrong physical information about the system. We finally provided an applicability map as a guide for different modeling methods for charge transport studies in molecular devices.

5.
J Am Chem Soc ; 142(21): 9708-9717, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32362123

RESUMO

We report a novel solid-state molecular device structure based on double self-assembled monolayers (D-SAM) incorporated into the suspended nanowire architecture to form a "Au|SAM-1||SAM-2|Au" junction. Using commercially available thiol molecules that are devoid of synthetic difficulty, we constructed a "Au|S-(CH2)6-ferrocene||SAM-2|Au" junction with various lengths and chemical structures of SAM-2 to tune the coupling between the ferrocene conductive molecular orbital and electrode of the junction. Combining low noise and a wide temperature range measurement, we demonstrated systematically modulated conduction depending on the length and chemical nature of SAM-2. Meanwhile, the transport mechanism transition from tunneling to hopping and the intermediate state accompanied by the current fluctuation due to the coexistence of the hopping and tunneling transport channels were observed. Considering the versatility of this solid-state D-SAM in modulating the electrode-molecule interface and electroactive groups, this strategy thus provides a novel facile strategy for tailorable nanoscale charge transport studies and functional molecular devices.

6.
Adv Sci (Weinh) ; 6(24): 1902412, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31871875

RESUMO

Herein, a simple structure, nonchlorinated solvent processable high mobility donor-acceptor conjugated polymer, poly(2,5-bis(4-hexyldodecyl)-2,5-dihydro-3,6-di-2-thienyl-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-thiophene) (PDPPT3-HDO), is reported. The enhanced solubility in nonchlorinated solvent is realized based on a denser alkyl side chains strategy by incorporating small size comonomer thiophene. An associated benefit of thiophene comonomer is the remarkable structural simplicity of the resulting polymer, which is advantageous for industrial scaling up. The alkyl side chain density and structure of PDPPT3-HDO can efficiently control the self-assembly properties in solution and film. By bar coating from o-xylene solution, PDPPT3-HDO forms aligned films and exhibits high hole mobility of up to 9.24 cm2 V-1 s-1 in organic thin film transistors (OTFTs). Notably, the bar-coated OTFT based on PDPPT3-HDO shows a close to ideal transistor model and a high mobility reliability factor of 87%. The multiple benefits of increased side chain density strategy may encourage the design of high mobility polymers that meet the requirements of mass production of OTFT materials and devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...